Abstract

In this paper, a new numerical solution technique, the differential cubature method, is applied to solve the free vibration problems of arbitrary shaped thick plates. The basic idea of the differential cubature method is to express a linear differential operation such as a continuous function or any order of partial derivative of a multivariable function, as a weighted linear sum of discrete function values chosen within the overall domain of a problem. By using the differential cubature procedure, the governing differential equations and boundary conditions are transformed into sets of linear homogeneous algebraic equations. This is an eigenvalue problem, of which the eigenvalues can be calculated numerically. The subspace iterative method is employed in search of the free vibration frequency parameters. Detailed formulations are presented, and the method is examined here for its suitability for solving the vibration problems of moderately thick plates governed by Mindlin shear deformation theory. The applicability, efficiency and simplicity of the method are demonstrated through solving some example plate vibration problems of different shapes. The numerical accuracy of the method is ascertained by comparing the vibration frequency solutions with those of existing literatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.