Abstract
AbstractFree vibration analyses of angle-ply laminated composite beams were investigated by the Gâteaux differential method in the present paper. With the use of the Gâteaux differential method, the functionals were obtained and the natural frequencies of the composite beams were computed using the mixed finite element formulation on the basis of the Euler-Bernoulli beam theory and Timoshenko beam theory. By using these functionals in the mixed-type finite element method, two beam elements, CLBT4 and FSDT8, were derived for the Euler-Bernoulli and Timoshenko beam theories, respectively. The CLBT4 element has 4 degrees of freedom (DOFs) containing the vertical displacement and bending moment as the unknowns at the nodes, whereas the FSDT8 element has 8 DOFs containing the vertical displacement, bending moment, shear force and rotation as unknowns. A computer program was developed to execute the analyses for the present study. The numerical results of free vibration analyses obtained for different boundary conditions were presented and compared with the results available in the literature, which indicates the reliability of the present approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.