Abstract

The free flexural vibration of a finite cylindrical shell in contact with external fluid is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modeled by using the Rayleigh–Ritz method based on the Donnell–Mushtari shell theory. The fluid is modeled based on the baffled shell model, which is applied to fluid–structure interaction problems. The kinetic energy of the fluid is derived by solving the boundary-value problem. The natural vibration characteristics of the submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, the nondimensionalized added virtual mass incremental factor for the submerged finite shell is derived. This factor can be readily used to estimate the change in the natural frequency of the shell due to the presence of the external fluid. Numerical results showed the efficacy of the proposed method, and comparison with previous results showed the validity of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.