Abstract

Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs) containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending stiffness of an edge cracked FGM beam. Thus, the cracked FGM beam is treated as an intact beam with continuously varying bending stiffness along its longitudinal direction. The characteristic equations of beams with different boundary conditions are obtained by transfer matrix method. To verify the validity of the proposed method, natural frequencies for intact and cracked FGM beams are calculated and compared with those obtained by three-dimensional finite element method (3D FEM) and available data in the literature. After that, further discussions are carried out to analyze the influences of crack depth, crack location, material property, and slenderness ratio on the natural frequencies of the cracked FGM beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.