Abstract

An extension of free-time and fixed end-point optimal control theory (FRFP-OCT) to monotonically convergent free-time and fixed end-point multi-target optimal control theory (FRFP-MTOCT) is presented. The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361, (2009), 106]. The qubit system of our interest consists of two polar NaCl molecules coupled by dipole–dipole interaction. The calculation examples show that our theory is useful for minor adjustment of the external fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.