Abstract

Thiol ligands bound to the metallic core of nanoparticles determine their interactions with the environment and self-assembly. Recent studies suggest that equilibrium between bound and free thiols alters the ligand coverage of the core. Here, X-ray scattering and MD simulations investigate water-supported monolayers of gold-core nanoparticles as a function of the core-ligand coverage that is varied in experiments by adjusting the concentration of total thiols (sum of free and bound thiols). Simulations demonstrate that the presence of free thiols produces a nearly symmetrical coating of ligands on the core. X-ray measurements show that above a critical value of core-ligand coverage the nanoparticle core rises above the water surface, the edge-to-edge distance between neighboring nanoparticles increases, and the nanoparticle coverage of the surface decreases. These results demonstrate the important role of free thiols: they regulate the organization of bound thiols on the core and the interactions of nanoparticles with their surroundings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call