Abstract

Type-based reasoning is popular in functional programming. In particular, parametric polymorphism constrains functions in such a way that statements about their behavior can be derived without consulting function definitions. Is the same possible in a strongly, and polymorphically, typed functional logic language? This is the question we study in this paper. Logical features like nondeterminism and free variables cause interesting effects, which we examine based on examples and address by identifying appropriate conditions that guarantee standard free theorems or inequational versions thereof to hold. We see this case study as a stepping stone for a general theory, not provided here, involving the definition of a logical relation and other machinery required for parametricity arguments appropriate to functional logic languages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.