Abstract

Abstract Current supportive bio-inspired design methods focus on handcrafting the inspiration engineers use to speed up bio-inspired design. However promising, such methods are not scalable as the time investment is shifted to an up-front investment. Furthermore, most proposed methods require the engineer to adopt a new design process. The current study presents FISh, a scalable search method based on the standard engineering design process. By leveraging machine translation between a representative corpus of biological and engineering texts, the engineer can start the search using engineering terminology, which, behind the scenes, is automatically converted to a biological query. This conversion is done using language models trained on patents and biological publications for the engineering and biology domains. Both models are aligned using the most used English words. The biological query is used to retrieve biological documents that describe the most relevant functionality for the engineering query. The presented method allows searching for bio-inspiration using a free-text query. Furthermore, updating the underlying datasets, models and organism aspects is automated, allowing the system to stay up to date without requiring interactive effort. Finally, the search functionality is validated by comparing the search results for the functionality of existing bio-inspired designs with their inspiring organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.