Abstract

We investigate thin films of “smart” polymer hydrogels used to convert miniature pressure sensors into novel chemomechanical sensors. In this versatile sensing approach, a smart hydrogel is confined between a porous membrane and the diaphragm of a piezoresistive pressure transducer. An increase in the environmental analyte concentration, as sensed through the pores of the membrane, is detected by measuring the change in pressure exerted by the hydrogel on the pressure transducer diaphragm. We compare the response of such a sensor with the response of a free-swelling hydrogel identical to the one used within the sensor. The sensor and the free hydrogel are observed to have comparable mean response times. However, the time-dependent response curve of the sensor, unlike that of the free hydrogel, is highly asymmetric between swelling and deswelling, with a smaller time constant for deswelling. We also investigate novel methods for increasing sensor sensitivity, such as use of a two-layer membrane with a nanoporous polymer inner layer, and pre-loading of the hydrogel under pressure. In ionic strength response tests, use of an inner membrane increases sensor sensitivity without increasing mean response time, an effect that varies with membrane water fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.