Abstract

In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$8~\mu \text{m}$ </tex-math></inline-formula> to 60 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> , and a wall thickness of 20 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> . Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call