Abstract

A suspension confined between two close parallel plates is studied in the Stokesian regime. The use of boundary integral equations and the lubrication approximation allows to compute the hydrodynamic forces acting on the particles. The forces are long ranged and depend on the orientation of the relative position and velocity of particles. This tensorial character predicts an “antidrag” that is observed in experiments. The effect of the computed hydrodynamic forces is studied in the dynamics of a jet of particles falling by a gravitational field, which shows a surface instability similar to the Kelvin–Helmholtz one. A theoretical model, based on hydrodynamic-like equations, is able to predict the instability that is produced by the interaction of the long-range forces and the free surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call