Abstract
The effect of free surface heat loss on oscillatory thermocapillary flow is investigated in liquid bridges of high Prandtl number fluids. It is shown experimentally that the critical temperature difference changes by a factor of two to three by changing the air temperature relative to the cold wall temperature. In order to understand the nature and extent of the interaction between the liquid flow and the surrounding air, the heat transfer from the liquid free surface is investigated numerically for the conditions of the present experimental work. The airflow analysis shows that even when the heat loss is relatively weak (the Biot number is unity or smaller), the critical temperature difference is affected appreciably. It is shown that the heat loss effect is significant in widely conducted tests near room temperature and that the critical temperature difference is much larger than the room temperature value when the heat loss is minimized. The analysis suggests that an interaction between the surface heat loss and dynamic free surface deformation near the hot wall is responsible for the observed heat loss effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.