Abstract

Formal asymptotic expansions of the solution of the steady-state problem of incompressible flow in an unbounded region under the influence of a given temperature gradient along the free boundary are constructed for high Marangoni numbers. In the boundary layer near the free surface the flow satisfies a system of nonlinear equations for which in the neighborhood of the critical point self-similar solutions are found. Outside the boundary layer the slow flow approximately satisfies the equations of an inviscid fluid. A free surface equation, which when the temperature gradient vanishes determines the equilibrium free surface of the capillary fluid, is obtained. The surface of a gas bubble contiguous with a rigid wall and the shape of the capillary meniscus in the presence of nonuniform heating of the free boundary are calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.