Abstract
We give new and improved results on the freeness of subgroups of free profinite groups: A subgroup containing the normal closure of a finite word in the elements of a basis is free; Every infinite index subgroup of a finitely generated nonabelian free profinite group is contained in an infinitely generated free profinite subgroup. These results are combined with the twisted wreath product approach of Haran, an observation on the action of compact groups, and a rank counting argument to prove a conjecture of Bary-Soroker, Fehm, and Wiese, thus providing a quite general sufficient condition for subgroups to be free profinite. As a result of our work, we are able to address a conjecture of Jarden on the Hilbertianity of fields generated by torsion points of abelian varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.