Abstract
The effects of the longitudinal turbulence intensity parameter of free-stream turbulence (FST) on heat transfer were studied using the aggressive flow characteristics of a circular tangential wall jet over a constant heat flux surface. Profile measurements of velocity, temperature, integral length scale, and spectra were obtained at downstream locations (2 to 20 x/D) and turbulence intensities (7 to 18 percent). The results indicated that the Stanton number (St) and friction factor (Cf) increased with increasing turbulence intensity. The Reynolds analogy factor (2St/Cf) increased up to turbulence intensities of 12 percent, then became constant, and decreased after 15 percent. This factor was also found to be dependent on the Reynolds number (Rex) and plate configuration. The influence of length scale, as found by previous researchers, was inconclusive at the conditions tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.