Abstract

Two-dimensional (2D) materials exhibit exceptional physical and chemical properties owing to their atomically thin structures. However, it remains challenging to produce 2D materials consisting of pure monoelemental metallic atoms. Here free-standing 2D gold (Au) membranes were prepared via in situ transmission electron microscopy straining of Au films. The applied in-plane tensile strain induces an extensive amount of out-of-plane thinning deformation in a local region of an Au thin film, resulting in the nucleation and growth of a free-standing 2D Au membrane surrounded by its film matrix. This 2D membrane is shown to be one atom thick with a simple-hexagonal lattice, which forms an atomically sharp interface with the face-centered cubic lattice of the film matrix. Diffusive transport of surface atoms, in conjunction with the dynamic evolution of interface dislocations, plays important roles in the formation of 2D Au membranes during the mechanical thinning process. These results demonstrate a top-down approach to produce free-standing 2D membranes and provide a general understanding on extreme mechanical thinning of metallic films down to the single-atom-thick limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.