Abstract

Free-standing porous carbon nanofiber networks (CFNs) were synthesized by electrospinning method and carbonization procedure. We study the implementation of porous CFNs as supercapacitor electrodes and electrochemical measurements demonstrated that porous CFNs exhibit a specific capacitance (205 F/g at the scan rate of 5 mV/s) with high flexibility and good rate capability performance (more than 70% of its initial capacitance from 5 mV/s to 200 mV/s). Furthermore, porous CFNs exhibited an excellent cycling stability (just 12% capacitance loss after 10,000 cycles). These results suggest that porous CFNs are very promising candidates as flexible supercapacitor electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.