Abstract

Free-standing Ni-Co alloy nanowire arrays are synthesized via a modified template-assisted electrodeposition method. The structure and composition analysis have been performed by employing X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The highly ordered nanowire arrays show a strong adherence to an alloy transition layer. Herein, the alloy nanowire arrays show higher electrocatalytic activity in terms of lower onset potential and higher peak current density compared to the sample synthesized by conventional deposition route for urea electro-oxidation. Moreover, the electrocatalytic activity can be facilely optimized by selecting the length of nanowire arrays (or the deposition time). The best sample deposited with a time of 600 s possesses an onset oxidation potential of 0.372 V (vs. Hg/HgO) and a peak current density of 322.82 mA cm−2 in 1 M KOH and 0.33 M urea solutions. The sample also shows good stability and activity even after sonication treatment. The excellent electrocatalytic properties of urea oxidation are considered due to the one-dimensional free-standing nanoscale alloy structure, which can largely boost the active sites, facilitate charge transfer, and improve the duration of urea electro-oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.