Abstract

The ion sieving effect of the porous two-dimensional covalent organic frameworks (COFs) in vanadium redox flow battery (VRFB) was greatly restricted by the brittleness and easy agglomeration of COFs in ion conductive membranes. Herein, the strategy of free-standing COF nanofiber as continuous ion conductive pathways is proposed to maximize the selective ion conduction of COFs. The free-standing TFP-TAPA electrospun COF nanofiber mat was fabricated by an in-situ growth-template etching method, densified with sulfonated polybenzimidazole (SPBI) and continuously dispersed in the membrane. Fibrillization gives rigid COF materials excellent flexibility to be freely bent, induces the orientated aggregation of sulfonic acid groups via hydrogen bonding for proton hopping, as well as the long-range vanadium ions repelling barrier via the sieving pores (6 Å) and Donnan effect of the imine groups in COF. The TFP-TAPA COF nanofiber continuous membrane shows 3 folds of H+/Vn+ selectivity over Nafion212, achieves excellent VRFB energy efficiency of about 80.5 % at 200 mA cm−2, which surpasses most state-of-the-art COFs based ion conductive membranes for VRFBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.