Abstract

Photosensitive ZrO2-SiO2 hybrid sol-gel coatings containing large contents of chelating rings were prepared by using the zirconium n-butoxide (TBOZ) and methyltriethoxysilane (MTES) as hybrid precursors, and benzoylacetone (BZAC) as chelating agent. The change of ultraviolet (UV) absorption spectra, chemical composition, and optical properties of ZrO2-SiO2 hybrid sol-gel coatings were analyzed before and after UV exposure and calcination. The refractive index of the ZrO2-SiO2 hybrid gel coatings decreased from 1.673 to 1.561 with the increase of the molar content of MTES in precursors. The sol-gel coating patterns with the periods of 20.24 μm, 10.11 μm and 3.99 μm on the PAMS substrates were firstly obtained by using the photosensitive ZrO2-SiO2 hybrid sol-gel films as fundamental materials through a process of UV contact lithography with photo masks and etching with ethanol. Finally, the free-standing gel coating patterns supported by copper grids, with the period of 12.70 μm and line width of 4.93 μm, and the period of 14.20 μm and line width of 3.82 μm, were obtained by removing the PAMS thermal degradation sacrifice layer after being calcined at 330 °C. Micrometer-periodic free-standing gel coating patterns with different structure have potential applications in the laser physical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call