Abstract

Implantable neural probes that are mechanically flexible yet robust are attractive candidates for achieving stable neural interfacing in the brain. Current flexible neural probes consist mainly of metal thin-film electrodes integrated on micrometer-thick polymer substrates, making it challenging to achieve electrode-tissue interfacing on the cellular scale. Here, we describe implantable neural probes that consist of robust carbon nanotube network embroidered graphene (CeG) films as free-standing recording microelectrodes. Our CeG film microelectrode arrays (CeG_MEAs) are ultraflexible yet mechanically robust, thus enabling cellular-scale electrode-tissue interfacing. Chronically implanted CeG_MEAs can stably track the activities of the same population of neurons over two months. Our results highlight the potential of ultraflexible and free-standing carbon nanofilms for stable neural interfacing in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.