Abstract

We theoretically investigate the structural, electronic, and transport properties of bilayer silicene. Due to the large numbers of degrees of freedom permitted by the buckled structure of the silicene, its bilayer structure can present several possible stacking configurations. We show that, in the lowest energy conformation, named AAp, the bilayer silicene loses its buckled structure, becoming planar. This structural conformation is established since there is an energy gain if the system loses its π cloud to create extra (σ-like) chemical bonds between the two layers. Simulated scanning tunneling microscopy (STM) images show excellent agreement with experimental STM images of bilayers silicene. We also analyze the two-dimensional (2D) and three-dimensional (3D) features of the band structure of the bilayer silicene. In particular, we show that the analysis of the 3D band structure is fundamental to a complete understanding of the electronic and transport properties in this material. Moreover, we show that...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.