Abstract

The ultra-small sized nanomaterials are important for basic functional components of future nanoelectronics, spintronics and sensor devices. In this study, based on first-principles density functional theory, the free-standing and supported nanoflakes of bare and hydrogen saturated black and blue phosphorene of diverse size and shape have been investigated. Cohesion, formation energy, thermal stability and electronic structure of these nanoflakes have been revealed. For nanoflakes supported by specific substrates, such as phosphorene, graphene and Mos2 monolayer, the equilibrium configuration and the binding energy of the flakes, as well as the effects of substrate on the electronic structure have been investigated. While the cohesive and formation energies and HOMO-LUMO gaps of nanoflakes with their edges passivated by hydrogen display clear size, shape and edge geometry dependencies, they are rather dispersed in bare nanoflakes. The binding of phosphorene nanoflakes to two-dimensional (2D) phosphorene, graphene and MoS2 monolayers is generally weak and originate from van der Waals interaction. Accordingly, when supported by these monolayers, the electronic structure of free-standing nanoflakes can be preserved for critical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.