Abstract

The development of smart structured cathode materials for supercapacitors (SCs) has sparked tremendous interest. However, the appropriate design to achieve high capacitance and energy density-based cathode materials remains a major problem for energy storage systems. This article describes the effective synthesis of self-supported 3D micro-flowers composed of ultrathin nanowires array of Co3O4 on Ni foam (NF) using hydrothermal conditions (Co3O4@NF). The mesoporous Co3O4@NF with a high surface area, providing a rich active state for the Faraday redox reaction and increasing the diffusion rate of the electrolyte ions. The optimized Co3O4@NF-16h electrode exhibited supreme electrochemical performance by delivering a high specific capacitance of 1878, (1127) and 1200 (720 C g−1) F g−1 at 1.0 and 20 A g−1, respectively. The Co3O4@NF electrode retained good capacitance stability of 91% over 10000 cycles at 20 A g−1 with excellent rate-performance of 67% at 20 folded high current values. The obtained results for the Co3O4@NF electrode are presented the enhanced pseudocapacitive performance, indicating the substantial potential for high-performance supercapacitor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.