Abstract

The utilization of mid-infrared (mid-IR) light spanning the 3-5 µm range presents notable merits over the 1.5 µm band when operating in adverse atmospheric conditions. Consequently, it emerges as a promising prospect for serving as optical carriers in free-space communication (FSO) through atmospheric channels. However, due to the insufficient performance level of devices in the mid-IR band, the capability of mid-IR communication is hindered in terms of transmission capacity and signal format. In this study, we conduct experimental investigations on the transmission of time-domain multiplexed ultra-short optical pulse streams, with a pulse width of 1.8 ps and a data rate of up to 40 Gbps at 3.6 µm, based on the difference frequency generation (DFG) effect. The mid-IR transmitter realizes an effective wavelength conversion of optical time division multiplexing (OTDM) signals from 1.5 µm to 3.6 µm, and the obtained power of the 40 Gbps mid-IR OTDM signal at the optimum temperature of 54.8 °C is 7.4 dBm. The mid-IR receiver successfully achieves the regeneration of the 40 Gbps 1.5 µm OTDM signal, and the corresponding regenerated power at the optimum temperature of 51.5 °C is -30.56 dBm. Detailed results pertaining to the demodulation of regeneration 1.5 µm OTDM signal have been acquired, encompassing parameters such as pulse waveform diagram, bit error rate (BER), and Q factor. The estimated power penalty of the 40 Gbps mid-IR OTDM transmission is 2.4 dB at a BER of 1E-6, compared with the back-to-back (BTB) transmission. Moreover, it is feasible by using chirped PPLN crystals with wider bandwidth to increase the data rate to the order of one hundred gigabits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.