Abstract

A free space collective Thomson scattering system has been developed to study pulsed power produced plasmas. While most Thomson scattering diagnostics on pulsed power machines use a bundle of fibers to couple scattered light from the plasma to the spectrometer, this system used free space coupling of the light, which enabled a spatially continuous image of the plasma. Initial experiments with this diagnostic were performed on an inverse wire array generated by a 200 kA, 1100ns rise time pulse power generator. The capabilities of this diagnostic were demonstrated by using the low frequency ion acoustic wave feature of the Thomson scattering spectra to measure the plasma flow velocity. The diagnostic was demonstrated to measure velocities between 20 and 40 km/s with an error of 4.7 km/s when fitting with a 600 μm spatial resolution or 8.9 km/s when fitting with a 150 μm spatial resolution. In some experiments, the diagnostic observed a bow shock in the plasma flow as the scattering intensity increased and flow velocity decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.