Abstract

We report on the realization of high-performance silica integrated two-dimensional lens assisted beam-steering (LABS) arrays along with the first-of-their-kind point-to-multiplepoint optical frequency transfer. {The LABS equips with $N$ antennas} and has the capability to produce arbitrary number of output beams with different output angles with the simple control complexity. We demonstrate that the LABS has 16 scanning angles, which can support {the access capability for the maximum of simultaneous 16 user nodes.} The coaxial configuration for transmitting and receiving the light as a monolithic transceiver allows us to reduce the out-of-loop phase noise significantly. Finally, the LABS-based non-blocking point-to-multiplepoint in-door free-space optical frequency transfer links with 24 m and 50 m free-space links are shown. After being compensated for the free-space link up to 50 m, the fractional frequency instability of $4.5\times10^{-17}$ and $7.7\times10^{-20}$ at the averaging time of 1 s and 20,000 s, respectively, can be achieved. The present work proves the potential application of the 2D LABS in free-space optical time-frequency transfer and provides a guidance for developing a chip-scale optical time-frequency transfer system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call