Abstract

Atmospheric turbulence has been described for many years by Kolmogorov's power spectral density model because of its simplicity. Unfortunately several experiments have been reported recently that show Kolmogorov theory is sometimes incomplete to describe atmospheric statistics properly, in particular in portions of the troposphere and stratosphere. It is known that free space laser system performance is limited by atmospheric turbulence. In this paper we use a non-Kolmogorov power spectrum which uses a generalized exponent instead of constant standard exponent value 11/3 and a generalized amplitude factor instead of constant value 0.033. Using this spectrum in weak turbulence, we carry out, for a Gaussian beam propagating along a horizontal path, analysis of long term beam spread, scintillation, probability of fade, mean signal to noise ratio and mean bit error rate as variation of the spectrum exponent. Our theoretical results show that for alpha values lower than alpha = 11/3, but not for alpha close to alpha = 3, there is a remarkable increase of scintillation and consequently a major penalty on the system performance. However when alpha assumes values close to alpha = 3 or for alpha values higher than alpha = 11/3 scintillation decreases leading to an improvement on the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.