Abstract

Existence of line of sight (LOS) and alignment between the communicating antennas is one of the key requirements for free-space-optical (FSO) communication. To ensure uninterrupted data flow, auto-aligning transmitter and receiver modules are necessary. We propose a new FSO node design that uses spherical surfaces covered with transmitter and receiver modules for maintaining optical links even when nodes are in relative motion. The spherical FSO node provides angular diversity in 3-dimensions, and hence provides an LOS at any orientation as long as there are no obstacles in between the communicating nodes. For proof-of-concept, we designed and tested an auto-configurable circuit, integrated with light sources and detectors placed on spherical surfaces. We demonstrated communication between a stationary and a mobile node using these initial prototypes of such FSO structures. We also performed the necessary theoretical analysis to demonstrate scalability of our FSO node designs to longer distances as well as feasibility of denser packaging of transceivers on such nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.