Abstract
This paper discusses several functional analytic issues relevant for field theories in the context of the Hamiltonian formulation for a free, massless, scalar field defined on a closed interval of the real line. The fields that we use belong to a Sobolev space with a scalar product. As we show this choice is useful because it leads to an explicit representation of the points in the fibers of the phase space (the cotangent bundle of the configuration space). The dynamical role of the boundary of the spatial manifold where the fields are defined is analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.