Abstract

We use the Kempf-Lascoux-Weyman geometric technique in order to determine the minimal free resolutions of some orbit closures of quivers. As a consequence, we obtain that for Dynkin quivers orbit closures of 1-step representations are normal with rational singularities. For Dynkin quivers of type A \mathbb {A} , we describe explicit minimal generators of the defining ideals of orbit closures of 1-step representations. Using this, we provide an algorithm for type A \mathbb {A} quivers for describing an efficient set of generators of the defining ideal of the orbit closure of any representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.