Abstract

During chronic inflammation and ageing, the increase in oxidative stress in both intracellular and extracellular compartments is likely to influence local cell functions. Redox changes alter the T-cell proteome in a quantitative and qualitative manner, and post-translational modifications to surface and cytoplasmic proteins by increased reactive species can influence T-cell function. Previously, we have shown that RA (rheumatoid arthritis) T-cells exhibit reduced ROS (reactive oxygen species) production in response to extracellular stimulation compared with age-matched controls, and basal ROS levels [measured as DCF (2',7'-dichlorofluorescein) fluorescence] are lower in RA T-cells. In contrast, exposing T-cells in vitro to different extracellular redox environments modulates intracellular signalling and enhances cytokine secretion. Together, these data suggest that a complex relationship exists between intra- and extra-cellular redox compartments which contribute to the T-cell phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.