Abstract

The human skin and eye melanin is commonly viewed as an efficient photoprotective agent. To elucidate the molecular mechanism of the melanin-dependent photoprotection, we studied the interaction of two synthetic melanins, dopa-melanin and cysteinyldopa-melanin, with a wide range of oxidising and reducing free radicals using the pulse radiolysis technique. We have found that although both types of free radicals could efficiently interact with the synthetic melanins, their radical scavenging properties depended, in a complex way, on the redox potential, the electric charge and the lifetime of the radicals. Repetitive pulsing experiments, in which the free radicals, probing the polymer redox sites, were generated from four different viologens, indicated that the eumelanin model had more reduced than oxidised groups accessible to reaction with the radicals. Although with many radicals studied, melanin interacted via simple one-electron transfer processes, the reaction of both melanins with the strongly oxidising peroxyl radical from carbon tetrachloride, involved radical addition. Our study suggests that the free radical scavenging properties of melanin may be important in the protection of melanotic cells against free radical damage, particularly if the reactive radicals are generated in close proximity to the pigment granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.