Abstract

Lipid peroxidation resulting from loss of free radical scavenging is thought to be involved in deterioration of sunflower (Helianthus annuus L.) seeds during accelerated ageing. In other respects, presoaking of seeds in a solution of low water potential (osmopriming) has been demonstrated to reinvigorate aged seeds. The aim of the present work was to study the effect of osmopriming on the germination of aged sunflower seeds and to investigate whether this effect was associated with the restoration of antioxidant defence systems. Seeds were aged for 5 days at 45°C and 100% relative humidity and then primed for various durations up to 7 days at 15°C in a solution of polyethylene glycol 6000 at −2 MPa. Lipid peroxidation was estimated by measuring malondialdehyde (MDA) and conjugated diene contents, and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were measured throughout the treatments. Accelerated ageing resulted in a marked decrease in the germination rate, and was associated with an increase in the levels of MDA and conjugated dienes, thus indicating lipid peroxidation. Ageing was also characterized by a decrease in the activities of CAT and GR. The activities of SOD and DHAR were much less altered. No APX activity was detected whatever the seed treatment. Priming of aged seeds progressively restored the initial germinative ability and resulted in a marked decrease in the levels of MDA and conjugated dienes, indicating a fall in lipid peroxidation processes. These effects of priming were also well correlated to the recovery of SOD, CAT and GR activities. Priming treatment for 7 days led to full restoration of the cell detoxifying mechanisms which were strongly altered during ageing. Glutathione content showed the same changes as GR activity. There existed a clear‐cut relationship between seed germinative energy, expressed as the germination rate, and the efficiency of free radical scavenging systems, in particular CAT and GR activities and glutathione content. The results suggest that the antioxidant defence systems might play a key role in seed vigour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.