Abstract

Based on density functional theory (DFT), to investigate relationships between the antioxidant activity and structure of dihydrocaffeic acid, quantum chemical calculation is used. The optimized structures of the neutral, radical and ionic forms have been carried out by DFT-B3LYP method with the 6-311G(d,p) basis set. Reaction enthalpies related with the hydrogen atom transfer (HAT), single electron transfer proton transfer (SET-PT) and sequential proton loss and electron transfer (SPLET) were calculated in gas and water phase. The HOMO-LUMO energy gap, electron affinity, electronegativity, ionization energy, hardness, chemical potential, global softness and global electrophilicity were calculated by using the same level of theory. Surfaces with a molecular electrostatic potential (MEP) were studied to determine the reactive sites of dihydrocaffeic acid. The difference in energy between the donor and acceptor as well as the stabilization energy was determined through the natural bond orbital (NBO) analysis. The Fukui index (FI) based on electron density was employed to predict reaction sites. Reaction enthalpies are compared with previously published data for phenol and 3,4-dihydroxycinnamic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.