Abstract
This paper investigates the modeling of styrene free radical polymerization in two different types of microreactor. A multiphysics model which simultaneously takes into account the hydrodynamics, thermal and mass transfer (convection, diffusion and chemical reaction) is proposed. The set of partial differential equations resulting from the model is solved with the help of the finite elements method either in a 2D or a 3D approach. The different modeled microreactors are on one hand an interdigital multilamination microreactor with a large focusing section, and on the other hand a simple T-junction followed by a straight tube with three different radii. The results are expressed in terms of reactor temperature, polydispersity index, number-average degree of polymerization and monomer conversion for different values of the chemical species diffusion coefficient. It was found that the 2D approach gives the same results as the 3D approach but allows to dramatically reduce the computing time. Despite the heat released by the polymerization reaction, it was found that the thermal transfer in such microfluidic devices is high enough to ensure isothermal conditions. Concerning the polydispersity index, the range of diffusion coefficients over which the polydispersity index can be maintained close to the theoretical value for ideal conditions increases as the tube reactor radius decreases. The interdigital multilamination microreactor was found to act as a tubular reactor of 0.78 mm ID but with a shorter length. This underlines that the use of microfluidic devices can lead to a better control of polymerization reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.