Abstract

Organic free radical intermediates are pivotal to our understanding of toxic chemicals formation from chlorophenols that widely exist in thermal processes. However, in most cases, multiple free radical intermediates exist and produce complex spectra that are hard to deconvolute. Identification of free radical intermediates is the current difficulty for detailed formation mechanisms of toxic products from chlorophenols. In this study, a universal bottom-up method was developed to identify the organic free radical intermediates. Candidate organic free radicals were firstly speculated according to the critical parameters obtained from experimental electron paramagnetic resonance (EPR) spectra and the calculated bond dissociation energies of precursors. Their theoretical spectra were then used retrospectively to justify the accordance with the experimental EPR spectra. Identification of the organic free radicals provides straightforward evidence for the formation pathways of pollutants from chlorophenol. Internal factors influencing formation of radical intermediates and the toxic products were also studied, including the ortho effect of the precursor, spin densities of the organic free radical intermediates, and steric hindrance effects of the molecular intermediates. In combination of the experimental results and theoretical calculations, detailed formation mechanisms of toxic pollutants intermediating by organic free radicals from thermal oxidation of chlorophenol were strongly evidenced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call