Abstract

Doped quasi-two-dimensional carbons with layer-stacked porous architecture and chemically functionalized surface are strongly appealing for high-energy supercapacitors, but there are daunting challenges to synthesize them through a cost-efficient and eco-friendly path. Herein, N/S dual-doped stacked carbon nanosheets (D-SCN) is first synthesized from coal tar pitch, a cheap coking by-product, beginning with a controlled molecular radical-polymerization initiated by 2,3-dimethyl-2,3-diphenylbutane, followed by a one-step carbonization-activation process in presence of potassium benzoate and N,N′-diphenylthiourea. As-obtained D-SCN with reasonable densification shares a well-designed layer-stacked topology texture, hierarchical interconnected porous structure and N/S dual-doped surface, which work together to harvest high supercapacitive performance. The D-SCN delivers a maximal specific capacitance of 458 ​F ​g−1, which is considerably higher than most of previously reported for other carbon materials. As-assembled asymmetric all-solid-state supercapacitor with a wide voltage range of 0–1.8 ​V takes on a volumetric energy density of 27 ​W ​h ​L−1 at a power density of 296 ​W ​L−1 with fading capacitance of merely 5.9% after 20000 cycles. The route advocated here for preparing pitch-based nanocarbons opens up new horizons in exploring large-scale preparation of electrode materials suitable for narrow spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.