Abstract

Free radical generation at the particle/biological fluid interface is one of the chemical processes that contributes to pathogenicity. In order to investigate the role played by iron, fibres of crocidolite asbestos have been modified by thermal treatments to alter their surface iron content. Two radical mechanisms, HO• from H2O2 and cleavage of a C–H bond, which are both active on the original fibres, have been tested on the modified fibres. C–H cleavage is dependent on Fe(II) abundance and location and is suppressed by surface oxidation while HO• release appears independent of the oxidation state of iron. Quartz specimens with different levels of iron impurities have been tested in a similar manner. A commercially available quartz (Min-U-Sil 5) containing trace levels of iron is also active in both tests, but reactivity is not fully suppressed by treatment with desferrioxamine, which should remove/inactivate iron. The radical yield attained is close to the level produced by a pure quartz dust, suggesting the presence of active sites other than iron. Ascorbic acid reacts with both crocidolite and quartz, with subsequent depletion of the level of antioxidant defences when particle deposition occurs in the lung lining layer. Following treatment with ascorbic acid the radical yield increases with quartz, but decreases with asbestos. Selective removal of iron and silicon from the surface may account for the differences in behaviour of the two particulates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.