Abstract

To deeply understand the formation mechanism of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in the thermal disposal process of polybrominated diphenyl ether (PBDE)-containing waste, this paper studied the formation pathways of key intermediates (free radicals, FRs) in the formation process of PBDD/Fs. BDE-209, the most common PBDE in the environment, was selected as the object of study to analyze FR formation by simulating the key conditions such as temperature (850 °C) and Fe-based materials when PBDE-containing waste entering cement kiln precalciner. Electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT) calculations were used to study the reaction. The result of simulation experiments revealed carbon-centered radicals, and DMPO-OH analysis further confirmed the generation of FRs. The findings confirmed previous calculations predicting the existence of radical intermediates during the formation of PBDD/Fs from BDE-209. DFT calculations revealed the existence of an inner ortho-position CBr bond in BDE-209. The priority order of the bond breaking of BDE-209 was ether bond, inner ortho-position CBr bond, and outside ortho-position CBr bond. BDE-209 can further form three kinds of FRs, namely, oxygen-centered radicals of single benzene rings, carbon-centered radicals of single benzene rings, and carbon-centered radicals of double benzene rings. The specific processes of FR formation were inferred: high-temperature homogeneous cleavage of chemical bonds, electron transfer, and chemisorption, where electron transfer and chemisorption may be more important pathways. The proposed inner ortho-position cleavage within BDE-209 provides new insights into the degradation of PBDEs and the formation of PBDD/Fs; the results regarding BDE-209 generation radicals further elucidate the synthesis mechanism of dioxins, which is important for controlling dioxin generation and emission during the treatment and disposal of waste containing PBDEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call