Abstract
Single crystals of L-cysteic acid monohydrate were X-irradiated and studied at 295 K using EPR, ENDOR, and EIE techniques. Three spectroscopically different radicals were observed. These were a deamination radical reduction product (R1), and two oxidation products formed by hydrogen abstraction (radicals R2, R3). R2 and R3 were shown to exhibit the same chemical structure while exhibiting very different geometrical conformations. Cluster DFT calculations at the 6-31G(d,p) level of theory supported the experimental observations for radicals R1 and R2. It was not possible to simulate the R3 radical in any attempted cluster; hence, for this purpose a single molecule approach was used. The precursor radicals for R1, R2, and R3, identified in the low-temperature work on L-cysteic acid monohydrate by Box and Budzinski, were also investigated using DFT calculations. The experimentally determined EPR parameters for the low-temperature decarboxylated cation could only be reproduced correctly within the cluster when the carboxyl group remained in the proximity of the radical. Only one of the two observed low-temperature carboxyl anions (stable at 4 and 48 K) could be successfully simulated by the DFT calculations. Evidence is presented in support of the conclusions that the carboxyl reduction product already is protonated at 4 K and that the irreversible conversion between the two reduction products is brought forward by an umbrella-type inversion of the carboxyl group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.