Abstract
This study presents an experimental investigation of a free piston expander-linear generator (FPE-LG) used for organic Rankine cycle (ORC) waste heat recovery system. A FPE-LG test rig using compressed air as working fluid is established. The motion characteristics, dynamic characteristics and the indicated efficiency of FPE-LG are analyzed. The motion characteristics and power output performance for different valve timings are studied. The degree of symmetry is defined to evaluate the asymmetry motion characteristics of the free piston assembly. The coefficient of cycle-to-cycle variation (COV) is presented to evaluate the cycle-to-cycle variation characteristics of the FPE-LG. Experimental results show that the free piston assembly displacement profile is similar to a sinusoidal wave and the free piston assembly can operate at high and relatively constant speed at the middle portion of the stroke. The maximum power output of 19W can be achieved when the intake pressure is 2.0bar and the operation frequency is 2.5Hz. The valve timing and intake pressure demonstrate a significant influence on the asymmetric motion and the power output performance of the FPE-LG. The indicated efficiency of the FPE (left cylinder) decreases with the increase in the intake pressure. The maximum indicated efficiency reaches 92.8% when the intake pressure is 1.4bar and the operation frequency is 2.0Hz. The indicated efficiency firstly increases and then decreases with the increase in the operation frequency. The COV of the FPE-LG decreases with increasing the intake pressure. The motion stability of FPE-LG improves with the increase in the intake pressure. Valve timing and valve train should be optimized in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.