Abstract
Previous studies of kinetic transport in the Lorentz gas have been limited to cases where the scatterers are distributed at random (e.g. at the points of a spatial Poisson process) or at the vertices of a Euclidean lattice. In the present paper we investigate quasicrystalline scatterer configurations, which are non-periodic, yet strongly correlated. A famous example is the vertex set of the Penrose tiling. Our main result proves the existence of a limit distribution of the free path length, which answers a question of Wennberg. The limit distribution is characterised by a certain random variable on the space of higher dimensional lattices, and is distinctly different from the exponential distribution observed for random scatterer configurations. The key ingredients in the proofs are equidistribution theorems on homogeneous spaces, which follow from Ratner's measure classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.