Abstract

Coupling is considered between fluid flow and a freely moving body shorter than the development length in an oncoming boundary layer or channel flow but longer than the flow thickness. The body lies within the core of the flow. The coupling occurs between the inviscid-dominated displacement and the viscous–inviscid pressure, the latter acting to move the body. This interaction can be unstable. It is found however that three factors serve to stabilise the interaction as each one alters the decisive balance of angular momentum. One is a 10 % shift forward in the position of the centre of mass. The second is a degree of flexibility in the body shape by means of its response to the induced pressure force. Third is a slight streamwise movement of the body which is sufficient to modify the viscous–inviscid pressure response and again produce stabilisation. The effects are largely independent of the lateral position of the body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.