Abstract

BackgroundThe increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS). To investigate in vivo to what extent the homeostasis of intracellular free Mg2+ is linked to pH in human skeletal muscle, we studied patients with metabolic myopathies due to different disorders of glycogen metabolism that share a lack of intracellular acidification during muscle exercise.MethodsWe assessed by 31P MRS the cytosolic pH and free magnesium concentration ([Mg2+]) in calf muscle during exercise and post-exercise recovery in two patients with McArdle's disease with muscle glycogen phosphorylase deficiency (McArdle), and two brothers both affected by Tarui's disease with muscle phosphofructokinase deficiency (PFK).ResultsAll patients displayed a lack of intracellular acidosis during muscle exercise. At rest only one PFK patient showed a [Mg2+] higher than the value found in control subjects. During exercise and recovery the McArdle patients did not show any significant change in free [Mg2+], while both PFK patients showed decreased free [Mg2+] and a remarkable accumulation of phosphomonoesters (PME). During initial recovery both McArdle patients showed a small increase in free [Mg2+] while in PFK patients the pattern of free [Mg2+] was related to the rate of PME recovery.Conclusioni) homeostasis of free [Mg2+] in human skeletal muscle is strongly linked to pH as shown by patients' [Mg2+] pattern during exercise;ii) the pattern of [Mg2+] during exercise and post-exercise recovery in both PFK patients suggests that [Mg2+] is influenced by the accumulation of the phosphorylated monosaccharide intermediates of glycogenolysis, as shown by the increased PME peak signal.iii) 31P MRS is a suitable tool for the in vivo assessment of free cytosolic [Mg2+] in human skeletal muscle in different metabolic conditions;

Highlights

  • The increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS)

  • We assessed the cytosolic pH and the [Mg2+] by 31P MRS at rest, during exercise and post-exercise recovery in the calf muscle of two patients with McArdle's disease with muscle glycogen phosphorylase deficiency (McArdle), and two brothers affected by Tarui's disease with muscle phosphofructokinase deficiency (PFK)

  • Patients with McArdle's and Tarui's disease, typically show a decrease or a lack of intracellular acidification during muscle exercise when studied by 31P MRS [6,7]. We used these diseases as natural experimental models to study the pattern of free Mg2+ during exercise and recovery in the absence of intracellular acidification to understand to what extent homeostasis of intracellular free Mg2+ is linked to pH

Read more

Summary

Introduction

The increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS). As a consequence [Mg2+] changes considerably in different metabolic conditions such as rest, exercise and recovery, showing an increase matched by a decrease of intracellular pH during exercise and recovery [3]. We assessed the cytosolic pH and the [Mg2+] by 31P MRS at rest, during exercise and post-exercise recovery in the calf muscle of two patients with McArdle's disease with muscle glycogen phosphorylase deficiency (McArdle), and two brothers affected by Tarui's disease with muscle phosphofructokinase deficiency (PFK)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call