Abstract

In this paper we investigate the properties of free Sheffer systems, which are certain families of martingale polynomials with respect to the free Lévy processes. First, we classify such families that consist of orthogonal polynomials; these are the free analogs of the Meixner systems. Next, we show that the fluctuations around free convolution semigroups have as principal directions the polynomials whose derivatives are martingale polynomials. Finally, we indicate how Rota's finite operator calculus can be modified for the free context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.