Abstract

This study aimed to evaluate the accuracy of laboratory-trained hip and wrist random forest and support vector machine classifiers for the automatic recognition of five activity classes: sedentary (SED), light-intensity activities and games (LIGHT_AG), walking (WALK), running (RUN), and moderate to vigorous activities and games (MV_AG) in preschool-age children under free-living conditions. Thirty-one children (4.0 ± 0.9 yr) were video recorded during a 20-min free-living play session while wearing an ActiGraph GT3X+ on their right hip and nondominant wrist. Direct observation was used to continuously code ground truth activity class and specific activity types occurring within each class using a bespoke two-stage coding scheme. Performance was assessed by calculating overall classification accuracy and extended confusion matrices summarizing class-level accuracy and the frequency of specific activities observed within each class. Accuracy values for the hip and wrist random forest algorithms were 69.4% and 59.1%, respectively. Accuracy values for hip and wrist support vector machine algorithms were 66.4% and 59.3%, respectively. Compared with the laboratory cross validation, accuracy decreased by 11%-15% for the hip classifiers and 19%-21% for the wrist classifiers. Classification accuracy values were 72%-78% for SED, 58%-79% for LIGHT_AG, 71%-84% for MV_AG, 9%-15% for WALK, and 66%-75% for RUN. The accuracy of laboratory-based activity classifiers for preschool-age children was attenuated when tested on new data collected under free-living conditions. Future studies should train and test machine learning activity recognition algorithms using accelerometer data collected under free-living conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.