Abstract

Factors that regulate the transfection efficiency of cationic lipid-based carriers are still largely unknown. We have shown in a previous report [F. Liu, H.W. Qi, L. Huang, D. Liu, Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration, Gene Ther., 4 (1997) 517–523.] that the transfection efficiency, to the lung, of a lipid formulation composed of N-[1-(2,3-dioleoyloxy)propyl- N, N, N-trimethylammonium chloride (DOTMA) and Tween 80 is directly proportional to the ratio of DOTMA to DNA. In this study, we investigated the mechanism underlying the high cationic lipid to DNA ratio dependent transfection activity. Specifically, we have examined the role of free cationic liposomes in affecting the transfection efficiency of the DNA/lipid complexes in vivo by intravenous administration. The data show that greater transfection activity of DNA/lipid complexes in the lung at a higher cationic lipid to DNA ratio is due to the function of free liposomes present in the DNA/lipid mixture. Free liposomes enhance the transfection activity of DNA/lipid complexes by increasing the retention time of DNA and decreasing transgene degradation in different organs. In addition to DOTMA liposomes, liposomes composed of 1,2-dioleoyl-3-trimethylammonium propane chloride (DOTAP) and 3 β[ N-( N′, N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) also enhance the level of gene expression in animals transfected by DNA/DOTMA complexes. These results suggest that inclusion of free liposomes into the DNA/lipid complexes may be important in achieving an optimal transfection activity in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call