Abstract

The Lovozero nepheline-syenite massif in the north-eastern Fennoscandian Shield, well-known to mineralogists and petrologists, is also interesting with its high contents of hydrogen-hydrocarbon gases in different forms of presence, which is untypical of magmatic rocks. The article systematizes and generalizes little known and unpublished data on the composition, location, character and scale (intensity) of the free gases (FG) emission within a major loparite deposit confined to the massif. СН4 and Н2 are dominant in the FG composition. The molecular weight distribution of hydrocarbon gas components corresponds to the classic Anderson–Schulz–Flory distribution with a steep gradient. Carbon and hydrogen of the gases are characterized by rather heavy isotope compositions, becoming lighter from the transition of methane to ethane. The FG volume has been estimated as 0.2–1.6 m3 of gas per 1 m3 of undisturbed rock. The gas recovery of walls in underground workings has been up to 0.2 ml/min/m2 for СН4 and 0.5 ml/min/m2 for Н2 in several years after their heading. The discharge of some shot holes that characterizes the gas emission intensity (1.8–2 m deep and 40 mm in diameter) is up to 300 ml/min, but its 1–2 orders lesser values dominate. The discharge time in some sections varies from several days to 20 years. The overpressure of gases towards the air mainly does not increase 100 hPa, sometimes reaching 120 kPa. It has been defined, that FG distribute irregularly (at the distance of centimeters to hundreds of meters) and their composition and particularly emission intensity perform different temporal fluctuations. The abiogenic origin of FG has been proposed, with FG appearing as a mixture of gases in various proportions: (a) gases remaining in microfissures at the massif's consolidation after the capture by fluid inclusions and those lost during degassing and (b) gases occurred in mechanic-chemical reactions, partial emission and concentration of occluded and diffusely scattered gases under the unstable stress-strain mode of the rock mass. Combustible and explosive hydrogen-hydrocarbon FG can accumulate in the air of underground workings and cause accidents, disrupting the workflow. The background for using characteristics of spatial-temporal variations of the FG emission as precursors of dangerous geodynamic phenomena has been indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.