Abstract

Two approaches for free-hand motion tracking that enable volumetric quantification of the murine heart were investigated. One approach used an instrumented, multijointed articulated arm attached to a 14 MHz ultrasound transducer array. A second approach used an E-beam transducer--a modified linear transducer array containing a main imaging array adjacent to three perpendicular tracking arrays. Motion between successive B-mode image frames was computed by tracking image speckle in each tracking array. Both tracking systems produced accurate results in a phantom validation study (4.50% error and 3.75% error for estimates derived using the articulated arm and E-beam tracking techniques, respectively). The tracking approaches also were tested in vivo on three mice. Results were compared to values obtained by mounting each mouse on a micromanipulator, adjusting its position by 0.5-mm increments, and acquiring B-mode images using a high-resolution ultrasound scanner. Left ventricular end diastolic volume (LVEDV) estimates differed from values obtained using the high-resolution scanner by a mean error of 18.2% and 2.60% for eight scans conducted on each of two mice using the articulated arm, and a mean error of 13.6%, 6.53%, and 12.58% for eight scans conducted on each of three mice using the E-beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call